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TURBULENT TEMPERATURE FLUCTUATIONS AND TWO-
DIMENSIONAL HEAT TRANSFER IN A
UNIFORM SHEAR FLOW
By Jay Fox
Lewlis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
Abgtract

Correlation equations for statistically homogeneous fluctuations of
velocity and temperature at two points in an infinite, uniform shear flow
are derived with allowance for a temperature gradient in an arbitrary
direction in a plane normal to the flow direction. The initially excited
isotropic turbulence decays and becomes anisotropic with time. After
Fourier transformstions are introduced, the resulting spectral equations
are solved for the case of weak turbulence wherein triple correlations
are neglected compared with double correlations. Spectra of turbulent
heat transfer and temperature fluctuation are calculated. For large
nondimensional velocity gradients, the thermal eddy diffusivity in the
direction normal to the veloclty gradient is much larger than that in the
direction of the velocity gradient. The thermal eddyldiffusivity in the
veloelty-gradient direction tends to equal the momentum eddy diffusivity

at large velocilty gradients.

NOMENCLATURE
a transverse veloecity gradient, dUi/dxz
a¥* dimensionless transverse velocity gradient, (t - to)dUl/dxz

b transverse temperature gradient, dT/dx,



P, P

y

o
H

e}
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transverse temperature gradient, BT/BXS

constant that depends on initial conditions

arbitrary points

Prandtl number, v/a

iAistantaneous pressure

distance from P to P!

distanceé vector from P to P!

component of T

average tempersature

instantaneous temperature

trangfer term for temperature fluctuations obtained by inte-
grating Ky 38/3ky; 1in eq. (25) over the angular coordinates
of & wave number sphere

time

reference time

an average veloclty component

instantaneous velqcity component

fluctuating part of velocity component defined by eq. (4)

gpace cqQordinate

thermal diffusivity

spectrum functions of Tu, or Tuz defined by eq. (29)

Fourier transform of ?Gg defined by eq. (15)

Fourier transform of EI?T defined by eq. (16)

spectrum function of 12 defined by eq. (30)
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) Fourier transform of <zt1' defined by eq. (17)

844 equals 1 for 1 =J and equals O for 1 # J

€ eddy diffusivity for momentum tranefer defined by eq. (34)

€, eddy diffusivity for heat transfer defined by eq. (34)

g Fourier transform of +p' defined by eq. (19)

e Fourler transform of Pt' defined by eq. (20)

2] spherical coordinate in wave-number space

K wave number

K* dimensionless wave number, vl/z(t - ‘to)l/2 K

® wave number vector

Ki component of wave number vector -

v kinematfec viscosity

3 dummy variable

p density

T fluctuating part of temperature defined by eq. (3)

P spherical coordinate in wave number space

P4 5 Fourier transform of uju} defined by eq. (18)

Subscripts:

i,k velues equaling 1, 2, or 3 and designating coordinaete directions

(2),(3) scalar quentities that arise from the effects of JT/dx, or
dT/dx=

Superscripts:

1

refers to point P!

average value
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INTRODUCTION

Phenomenological theorles of turbulence, which are reviewed in [1],
have recently recelved support from statistical turbulence theory. In a
uniform shear flow with decaylng turbulence, Deissler [2] found a tendency
of the ratlc of eddy diffusivities for heat and momentum to approach unity
for conditions that correspond roughly to steady channel flow. Develop-
ments of this nature do not form a basis for supplanting phenomenological
theories, which are the only practical means of organizing quantities of
experimental evidence. Rather, statistical theories further the under-
standing of turbulence and may, 1n some instances, polnt the way for new
extensions of the phenomenological theories when no experimental evidence
is available.

A uniform shear flow is described by a constant gradient of mean
velocity in a directlon normal to the flow direction. No boundaries are
present. Transient turbulence, which is spatially homogeneous, is ini-
tially established, say by a wire screen, and the turbulence is later
studied when it 1s weak enough for the triple correlations of velocity
or temperature fluctuations to be neglected.

Early statistical investigations of turbulent heat transfer were con-
cerned with the isotropic turbulence that arises in the absence of a mean
velocity gradient [3],[4]. For shear flows, numerical values of the ve-
locity correlations were first presented by Deissler [5]. Additional
studlies of heat transfer, pressure fluctuations, and velocity correla-

tions were accomplished by him [2],[6], and Fox [7]. In the present
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effort, these studies are extended to include the effects of a tempera-
ture gradient with components not only in the direction of the velocity
gradient (the subject of [2]) but also in the direction normsl to both
the wvelocity vector and the veloclty gradient. A similar arrangement

of vectors occurs In a tube flow with circumferential variations in heat
transfer. In the following, temperature gradient effects are shown to
be separsble into components; consequently, the results of the present
investigation supplement those of [2].

Several features of stronger turbulence are present in weak turbu-
lent shear flows, as shown in [5]. Transfer between eddies of different
sizes 1s present, as is production of turbulence by the actlon of the
mean velocity gradient. The decay of velocity and temperature fluctua-
tions proceeds, however, despite the production effects slnce they are
not strong enough to offset dissipation effects.

ANALYTTCAL FORMULATION
The thermsl energy equations at two polnts P and P' can be

written, for constant properties, as

3 d(%T) i
5t TSR T S oms (1)
and
o, AHE)  32m
St Tox T VS owg (2)

where G% and T are the lngtantaneous velocity components and tempera-

ture. Cartesian components of the position vector X are designated by
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the subscript k, whilch takes on the values 1, 2, and 3. A repeated sub-
script on a term implles a summation of three terms corresponding to the
three values of the subscript. Symbolse t and o represent time and

division of instantaneous quantities into steady

and fluctusting components is accomplished by setting

TaT+ ¢ (3)
and

These relations are substituted into Eq. (1), and the resulting equa-
tion is averaged over a large number of systems that are maoroscopically
the seme but have random fluctuating quantities that are spatially homo-
geneous in a statistical sense (ensemble average). The averaged equa.-

tlions are subtracted from the unaveraged ones with the result

T 4 g DT 4y T 4 O(mw) 3T _ 3% c
ot om,  Fowm  om  om | S, omg (%)

where the overbar indicates an averaged quantity. The average of a fluc-
tuating component is necessarily zero. At point P', the equation corre-
sponding to Eq. (5) can be visualized from Egs. (1) and (2). In a similar

manner, the Navier-Stokes equatlons were treated in [5] to yield (at

point P')

duj BU j 1 dp! d%u

—d 9, - =8B

5+ % S 51&'1{ (“ 3 - 5 ) = - S5 Ve Sz ©

An equation for Tuj igs obtained by multiplying Eq. (5) and ué and

(6) by T, adding, and averaging the resulting equation. In the



interest of brevity, the turbulence is assumed weak at this point in the
analysis so that the triple correlations that arise are neglected com-

pared with the double correlations. None of the omitted triple correla-

tions is different fr

dtu, d7u U dvu!
St Yk Xy Uity dxy M Yk OX}
— deTut d87u!
A HP e (7)
P axj Bxk axk Bxk axk

where the independence of fluctuating quantities at one point from the
position of the other point has been utilized in placing the quantities
inside the spacial derivative signs. In homogeneous turbulence,
(B/BXR)XK = 3/dry and (B/bxk)x£ = 3fdr, if X' =X+ T. In the case of
a single steady velocity component Uy and one velocity gradient

dUy /dx5, & simplifying relation exists

( - ) ol Tul = ﬂ T _.é_. [ (8)
U - U 57— ™) = g5 Te 5 T
k 2 1
which reduces Eq. (7) to
avu. du
0 T4 _ 1 O T 4T or ol o o & 1_
-St_-b— T j g]a I'2 B-I-'I TQa ukuJ g;{-lz Tuz lj &—5
2 1
1y — 0% Tu,
- = + (0t v) m——, (9)
o arj ark 6rk

where 8y3 =1 for J=1 and O for 341
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A similar procedure applied to the equations corresponding to

Egs. (5) and (6) at P' and P ylelds

d ———  —— dly ST auy d
+ ' —— \ + 1 =
St T ust' 847 3%, U Ut St | Tg ro 31 T
3T
19 7 1
= = PpT' *+ (a+ 10
sy o T Y S (10)

and, likewise, Eq. (5) at P and the corresponding equation at P' yield

_ d - _ z.__r

_TT'+_I.I.]_'.I' ....a_-r-r'-i-.éz_(u 'r'+'tu')=2a.——a-—II—-. (ll)
2 k k

at 5X2 arl axk Brk Brk

An additional equation is obtained by applying 8/5x3 to Eq. (6) and

noting the continulty equation aué/éxj = 0. This produces

2., dul dUL d%(ulwy) dulu,
R i T s (12)
%3 9% X3 O 9%y Ok J 9%k
Multiplying Eq. (12) by 1, averaging, and introducing ry =x§ - x5 give
2 au, dtul

1 omp' .. 1 2, (13)

e Brj Brj sz Brl
Similarly,

1 BZF _ dUl\ Buz'r' (14:)

P Bri.6r1 ax,, Brl

Fourier transforms are introduced:

T (7) =f rj(k’)e@[fK’ . T)dR, (15)



o0

ug ' (T) =f Ti('k’)exp[i'i? . T4R, (16)
T (T) = JP:('K’)exp[{E . Plax, (17)
uguj (7) =f:ij<7<')exp[i7<’ - T1dR, (18)
() = j;(?)exp[i? © T]dK, (19)
o7 () i[wc'(?)exp[i? - T]&R, (20)

where |?1 = K 1s the wave number, which can be interpreted as the recip-
rocal of an eddy size.

The Fourier transforms of Egs. (9) and (13) are

ors 4au oY+ au
J _ 1 J QT b _ 1 _ 2
S5t axz Ky BKZ + CPk,J rxk + 513Yz dxz =-3 iKJ-C (o + v)K T3 (21)
and
1 KlK° dUl
-2 ikt = 2 -———-KZJ 2 Em, (22)

where dUl/dxz and BT/axk are constants. Eq. (22) can be subtracted
from Eq. (21) thereby eliminating { from the equations. A similar
procedure applied to Egs. (10) and (14) yields an equation of the saime

form for Ti{- In the present study, the case of r =0, BT/BXZ £ 0, and
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8T/8x3 # 0 1s considered so that y| = Ty Symbols a = dUi/dxz,
b = JT/dxp, and c = OT/dxz; are introduced so that the final equations

become

r

g org ‘ KiKz (1 2
-g_t—- - &Kl -Yz 2 - bCP22 - CCP23+ 28 Kz - (?;-‘. ]) VK Yo, (25)

or dr K. K ‘
-8 == - Yo-{=—+1) w7 (24)
3 1 A 32 33 z 2 \5 3
and
2
82 - ai(l %2_2 = - Zb‘f‘z - 20Y3 - 20K Dy . (25)

where Eq. (25) is the Fourier trensform of Eq. (11).
SOLUTION OF SPECTRAL EQUATIONS
Isotropic turbulence and zero tempersture fluctustions are assumed
as initlal conditions. Expressions for ¢po and @zz that satisfy
these initial conditions have been reported in [5] and [7]. The latter

is
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J (k@ +[k_ + ak_(t - t_)]° + «2 ?
o 141 [ 1 o] 3

202 + 2
12x (Kl KS)

4 N
X exp {-zv(t - to)[x2 + —13- azK%(t - ’co)2 + akika(t - tollj

Pz3 =

KE KE K2
% 1 + 32
2 2 2 4
K+ [Kz + aky (t - to)] t Ky oK
2K kS Ky Ko + 8Ky (t - tg)
+ l/éﬁ tan~L i72 - tan~1 1/2
2 2 2 2 2 2 2
(Kl + Ks) K (Kl + KS) (Kl + KS)
2
K . K Ko + aky(t - &
+ _—ETEL_E— tan~1 __z 17z - tan~1 _Z2 l( 1/20) (26)
G| e 0+ @

where J, and t, are constants that depend on the initial conditions.
In [7], the solution for ¢@gz = @z, although nonzero, was found to
produce a zero value of GEE;, which was consistent with the lack of a
velocity gradient in the xp,xz-plane. Egs. (23) and (24) of this inves-
tigation have been solved for the effects of @pz by omlission of the
terms contalning Poo and Pzz (the linearity of the equations permits

the addition of solutions). Zero contributions to U, and Tuz are

obtained from the direct effects of ¢oz; however, an indirect effect that

does contribute to Tug enters Eq. (24) in the fifth term. This contri-
bution can be traced to the expression of the pressure effect { in terms

of Yo in Eq. (22)s The remaining portion of Yo that contributes to
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T, is the same as that reported in [2]; it is not repeated herein. In

the following solutions to Egs. (24) and (25), only those expressions

that contribute to Tus or 12 are shown.

For Pr = 1, the Fourier transform of Tuz is

J c (k% + K+8.K(t-'t)]2+K22
) 1 Ez 1 ) 3J
2 2 2
l2xn“aky (k] + Kg)

T3=

2 1l 2.2 | 2
X exp {-Zv(t - ) K+ akqKo(t = ) + 38 k7 (t < tO)J}

aKi(t - to) KiKg
X4 e 1/2
2
ke + [k, + ak_ (t - + K
1 [2 sy (b - %) 3 (K§_+ K%) KE
: K Ko + akq(t - ¢t
x | tan~1 z / - tan~1 z l( 1/20)
1l/2
(el 2 2 2
(Kl + KS) (Kl + KS)
2
KEK K K, + ak (t - t)
——Eé—é-ﬁ_ tan~t E 7% " ten~L 2 L 1/20 . (27a)
(Kl * KS) (K% + K%) (K% + K%)

For Pr # 1, yz tekes the form
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2
2 - 2 2
i Je {Kl + IKZ + &Kl(t to)l + KS}

3 12nfaky (kG + «B)

( e T . \
e L/7r - 7 K2 + 2 + K2
xp aKky 1 3 3

- 2y(t - t,) [Kz + aKyKp(t - to) + 3 a7KE (6 - )L}

Kotakq (t-tg)

2
y oxp _[(l/P:i—l]v§Q§+§_3+K§>
1
K2
2
K
X 1 + K2 £

2 3 2 2 2
K:lz_ + [Kz +8.Kl(t - to)] + Kg Kl + g + K3

N K+a/<(t-t)
+ 1 tan-1 ¢ 1 X2 1 o

1/2 5\ 1/2

(KJZ_ + K%) (KJZ_ + k%) (K:zL + K3)

-tan

-

-
K K Ko +akq(t-1t.)
2 1 -1 2 _ -1 "2 1 0

X K2+—————17§ tan ——T-é tan 1/2 de. (27'b)

2 2 . 2 2 2 2
(Kl+K3) (Kl+ K3) (Kl + KS)

=

These expressions for y, and yz verify the fact that the turbu-

lent heat-transfer components Uy and Tuz arise from temperature

gradient components in the respective directions OT/dx, and OT/dxs.

The transform of the portion of +t° that arises from oT/3x5 1is,

for Pr =
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2
a 2 + - 12 2
. J e {Kl + [Kz aKl(t to)] + Ks}
(3) 121:2a2r<f(;<§ + K%)

YA o’ 1 ok

! | Z

K Ko + aky(t - t.)
x [tan™t 2 : - tan™T -Z L ° . (28)
(k2 + k2)Y 2, 2%°
YA (kT + K3)
The other portion 8(2) that is a result of BT/BXZ 1s the same as that
reported in [2].
The convenience of interpreting functions of « 1instead of functions

of K was pointed out by Batchelor [8]. Following his suggestlon, the

integrations that lead to f%s) and Tu, are accomplished in two steps,

the first of which involves integrating over the angular coordinates of a

wave-number sphere:

i 27
P4 () t/f YS(K;CP:G)KZ sin 6 do de (29)
0 Y0

T
A(S)(K) i/o\ﬂ . 5(3)(K,CP,9)K2 sin 6 a9 d4. (30)

A display of I's and A(3) shows how the contributions to Tuz and

\

T are distributed among wave numbers or eddy sizes, since

TN

3)
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?ugf[ Iz dk and T%S)jf 8(3) dx. (31)

0 0

COMPUTED SPECTRA

Numerlcally calculated spectra of ?ﬁg and T%S) are displayed in
dimensionless form in Flgs. 1 and 2 for several values of the dimension-
less velocity gradient a¥. Sinceé time enters all the dimensionless
representations, the curves for various a¥ show the effect of velocity
gradient on the spectra at any given time while the turbulence decays.
Dashed curves correspond to those in [2] because of separsbility of
solutions. For large Prandtl numbers, the spectra of ?Eg in Fig. 1
peak at large wave numbers (small eddy sizes).

Isotropic spectra (a* = 0) in Fig. 1 are the same for ?ﬁg and
?EE, as previously reported in [4]. Tha behavior of the pesks of the
spectra of Tuz and Tu; is similar to that of the respective production
terms cPzz and by, in Egs. (23) and (24); Qo decreases and shifts
toward lower wave numbers as the velocity gradient increases, whereas ¥33
increases markedly with little shift (see Fig. 5, ref. [5], and Fig. 2,

ref. [7]).

——

a with increas-

A shift to higher wave numbers in the spectra of
ing velocity gradient is evident in Fig. 2 both at the peak and at moder-
ate values on the high-wave-number side, resulting in an elongation of

the spectra toward high wave numbers. This spectral change is evidently

due to a transfer of activity from low wave numbers (large eddies) to
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high wave numbers (small eddies) by the action of the second term in
Eq. (25), which is known as the transfer term. The name stems from the

Fourier transform relation

o0

ott! B PR
Ty Eﬁzf'n -l Ky 5 exp[ik . r] ar, (32)
which becomes, for r = O,
o0
0%
Ky v dr = O. (33)
=00

Similar results can be obtained from corresponding terms in Egs. (23) and
(24). Thus, these terms contribute nothing to B;Eg/at, dTu,/3t, and
372/3t, but they do alter spectral distributions.

‘The integration shown in Eq. (33) can be accomplished in two steps
by first integrating over the angular coordinates of a wave-number sphere
and then integrating over the wave numbers. Of course, the last step
yields a trivial result, but the filrst result is a spectral transfer

function. For Pr = 1, the integrated transfer term corresponding to

—

Tz is shown in Fig. 3. Most of the transfer of activity is out of the

low-wave-number spectrum and into the high-wave-number spectrum, but
some reverse transfer occurs at low wave numbers and low velocity gra-
dients. Deissler [2] attributed this activity transfer to a vortex-
stretching process, which might also involve vortex compression at low

velocity gradients and thereby produce some reverse transfer.
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FRODUCTION, TEMPERATURE FLUCTUATION, AND CONDUCTION SPECTRA

Production of temperature fluctuations by the third and fourth terms
in Eq. (25) is interpreted as a result of the action of the temperature
gradient on the respective turbulent heat transfer, ?;; and 732,
Conduction or dissipation in the last term reduces local tempersature
peaks by molecular heat conduction eway from hot spots. Production and
conduction terms can be integrated over a wave-number sphere to yield
spectral distributions in the same menner as that used to obtain the
temperature fluctuation spectra of -;E in Fig. 2. After normelization
of the peak values to unity, all three spectra are shown in Fig. 4 for
Pr =1 and a high velocity gradient (a* = 50). Actually, two sets of
spectra corresponding to the separate effects of BT/BXS and BT/BXZ
(from [2]) are displayed in Fig. 4. For low velocity gradients, the
three spectra are close together, as those in Fig. 4 of [2]. For a large
velocity gradient, production, fluctuation, and conduction spectra in
the present Fig. 4 peak at successively greater wave numbers.

Al]l these effects take place as the turbulence and the turbulent
temperature fluctuations decay. Fluctuations are produced in the large
eddies (low wave numbers), transferred to the small eddies (high wave num-
bers), and finally dissipated by molecular conduction.

TEMPERATURE-VELOCITY CORRELATION COEFFICIENT
Corrsin [3] introduced a temperature-velocity correlation coefficient

that is modified herein to account for the separate effects of BT/BXZ

and BT/BXS. Two dimensionless coefficientsare utilized,
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T, Tu,
2 and 5
17z

(T?z> “2)

sented in [2]. The latter coefficient has been calculated from integrals

H

of the curves in Figs. 1 and 2 and those in Fig. 2 [7], all for Pr = 1.
Fig. 5 is a display of both correlations as a function of veloelty gra-
dient, starting with the perfect correlatlion value of -1 that was ob-

tained in [4] for isotropic turbulence (a* = 0). One correlation coef-

TuS

5 z\/2
1(3) u3

other, by decreasing monotonically, shows a continuous loss of correla-

ficienf achieves an asymptotic value of -0.9 whereas the

tion between the temperature and velocity fluctuations as a*

increases.
EDDY DIFFUSIVITIES

The eddy diffusivities of momentum and heat (in the Xo- and Xz-

directions)are defined by

U.lu2 Tu2 TuZ)

€S T TWay 0 ) T Wy a) T SE, 0 (%4)

Ratios of eddy diffusivities play a large part in phenomenological

theories of steady turbulent flows. A unity value of eh(z)/e produces

the best agreement between experiment and analysis for Prandtl numbers

that are not too low [1]. 1In the transient turbulence analysis of [2],

Deissler obtained a similar tendency of €h(2)/€ toward unity at high
*

values of a" which were found to correspond roughly to steady turbulent

flows. Recent phenomenological analyses [9], [10] of circumferential
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variations of heat transfer in round tubes are based on an assumption of
equal eddy diffusivities in the radial and circumferential directions;
that is, en(2) = €n(3) in the present notation.

A dimensionless eddy diffusivity v5/2(t - t_)3/2 en(3)/Jo can be
obtained by integrating the curves in Fig. 1. Integration of the curves
in [5] for e 1s also necessary for the calculation of eh(s)/e, which
is displayed in Fig. 6 along wlth eh(z)/e from [2]. Although the
curves for the two ratios are not wldely separated at low velocity gra-

dients, which are near the isotropic case (a* = 0), large velocity gra-

dients produce values of eh(s)/e that are two orders of magnitude
greater than values of eh(z)/e, except for low Prandtl numbers.

The relative magnitudes of eh(S) and ¢ can be compared with

h(2)
the magnitudes of the turbulent velocity fluctuations (or turbulent
energy components) in the two directions ug and ug. Refs. [5] and

[7] show that u% proceeds rapidly but asymptotically toward zero at

——

large velocity gradients, whereas u% decreases slowly from the average

of the energy components uiui/S, which increases with velocity gradient.
Likewise from physical reasoning, it is clear that the thermal eddy dif-

fusivity is greater in the direction of greater velocity fluctuations.

——

The existence of greater u% than u% has long been sugpected

[11] and, in recent times, has been verified experimentally in tube and
channel flow [12], [13], and in boundary layers [14]. In fact, the
ordering of all three components of turbulent energy, from largest to

smallest, is the same u%, u%, u% in those measurements and in the
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present theory [7] at large velocity gradients. Apparently, not all
features of boundary layers and tube flow are dependent on the presence
of boundaries.

Delgsler [2] compared the transient analysis with a steady flow in a
boundary layer or tube by taking szerage ~ 1 from turbulent energy
spectral curves and 0.3 & as a representative length, where & 1is the
boundary layer thickness or tube radius. If U 1s an average velocity
and QU /dx, ~ U/S, then & is of the order of 0.1 Us/v. This im-
plies that eh(s)/e is much larger than eh(z)/e for Reynolds numbers
of 10% and over that are encountered in practice.

The results of the present analysis, together with existing velocity-
fluctuation measurements, provide no support for an assumption of equal
thermal eddy diffusivities in the radial and circumferential directions
(eh(z)-= eh(S)) in turbulent tube flow. Instead, the relation
eh(S) > Eh(z) 1s indicated.
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Figure 1. - Dimensionless spectra of ﬁ; and 1?2 for uniform transverse
velocity and temperature gradients and for various Parandtl numbers.
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Figure 1. - Continued. Dimensionless spectra of Tuz and uy for uni-
form transverse velocity and temperature gradients and for various Prandt!

numbers.
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Figure 1. - Concluded. Dimensionless spectra of Tuz and U, for uni-
form transverse velocity and temperature gradients “and for various Prandt!
numbers.
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Figure 3. - Dimensionless spectra of transfer terms in spectral equations for T2 and T2 . Prandt|
number, 1. &) 2
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Figure 4. - Comparison of production, temperature fluctuation, and conduction spectra from spectral

ations for T2
equations for 3

(Curves normalized to same height.)

and 1.'(22) at large velocity gradient. Prandtl number, 1. a* ={t - tq) dUy/dx, = 50.
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Figure 5, - Temperature-velocity correlation coefficients as a function of dimensionless velocity gradient.

Prandtl number, 1.
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Figure 6. - Ratio of eddy diffusivity for heat transfer to that for mementum transfer
as a function of dimensionless velocity gradient.
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